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MAX IMUM RANGE THREE-DIMENS IONAL
LIFTING PLANETARY ENTRY

I. INTRODUCTION

With the advent of the Space Shuttle, lifting reentry trajectories with
medium lift-to-drag ratio (L/D) become of practical interest. Trajectories
for this type of vehicle have, however, been investigated for a long time,

The downrange capabilities were first discussed by Sanger [1] in 1933 and
later on were studied by many investigators (see, e.g., References 2 and 3).
The trajectories are, in general, oscillatory and can be thought of as a
quasisteady-glide (QSG) component (with y = 0) superimposed by a perturba-
tion (with time-varying frequency and damping in the linear approximation).
The QSG solution is an algebraic relationship between density, velocity, andlift
coefficient, and this problem is readily solved for constant L/D, For small
deviations from QSG, the equations may be linearized (Campbell [4]) or
approximated by higher order expansions (Hanin[5]) to obtain frequency and
damping of the actual trajectory. Recently Shi, et al.[6 and 7] using matched
asymptotic expansions were able to achieve analytical approximate solutions
to the nonlinear equations for a wide range of entry parameters.

Cross-range investigations have appeared in the literature since about
1960 L8 through 13]. Because of the increased dimension and nonlinearity
of this problem, analytical soluticas are even more sparse than for planar
entry, and most investigations involve numerical computations. Eggers [8],
Slye [ 9], and Jackson [10] conusider a constant bank angle QSG maneuver.
London [12] commented on the influence of the centrifugal term in the heading
differential equation for these solutions, The equations obtained by Jackson
for a spherical earth lend themselves to consider a bank angle program as a
function of velocity and lateral range [11]. This minor circle turn is further
discussed in References 13 through 16.

In this report, a variational formulation for footprint maximization
under QSG conditions is given. For a special case, some analytical approxi-
mate integrals are obtained. For an entry vehicle with L/D = 1,4, QSG-
footprint trajectories resulting from a numerical initial value search/trajec-
tory optimization procedure are given. The perturbation equations around
three-dimensional QSG trajectories are derived and discussed together with
numerical solutions of non-QSG trajectories., Finally, the influence of a
heating constraint on a maximum lateral range non-QSG reentry trajectory is
discussed for a Space Shuttle orbiter-type vehicle.



2. COORDINATE SYSTEM

The equations of motion are written in a flight path oriented axis
system, the x-axis of which is aligned with the velocity vector, The z-axis
is downward in the vertical plane, and the origin of this right-handed system
is based in the vehicle center of gravity (c.g.). The position of the vehicle
c.g. with respect to the planet is specified by the downrange angle © , the
cross-range angle A and the radial distance r = R+ h (Fig, 1). The
heading angle relative to the initial conditions is designated by x , positive

for right turns.

INITIAL ORBIT
PLANE

RN
N AR VEHICLE AT
\\\\\\\\\\%\‘\& N\ TIME t
Ho, BRI AR CRAECTORY
RIZONTL —— TRAJECT
TRAJECTORY

OVER GROUND

Figure 1, Coordinate system,

3. MATHEMATICAL MODEL AND SIMPLIFYING ASSUMPTIONS

3.1 Planet Model

Because of the planet rotation, the oblateness, and the variation of
the atmospheric properties with location and time, an actual entry trajectory
depends on location, direction, and time of entry. For general entry trajec-
tory investigations, a reduction of the possible parameter combinations is
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often desirable. The dependency of the trajectory on entry time is eliminated
by assuming

(A1) a stationary atmosphere,
the dependency on entry point and direction by the following three assumptions:
(A2) no planet rotation,

(A3) no wind,

(A4) planet and atmosphere are point symmetric (homogeneous on sphere-
shells).

Assumption (A4) eliminates the oblateness effects and the latitudinal varia-
tions of the atmosphere. For earth reentry with satellite velocity along the
equator, assumption (A2) leads to errors of approximately

6 percent in the aerodynamic velocity,

12 percent in dynamic pressure,

20 percent in the heating rate,

initially. For meridional entry, the errors are much smaller, Best approxi-
mations to actual trajectories can be expected with these assumptions for
meridional entries in high latitudes, These assumptions about the planet
considerably reduce the variational equations for reentry.

Since the purpose of this report is to investigate basic properties
of maximum range trajectories, they will be adopted along with others simpli-
fying the vehicle model. The influence of oblateness and earth rotation on
reentry trajectories is discussed in References 17, 18, and 19. The last
two references also touch on the effect of assuming

(A5) an exponential density law, p = p, exp(-Bh) ,

which is convenient for analytical computations.

3.2 Vehicle Model

The vehicle is assumed to be

(A6) a point mass with instantaneous angular control,



The aerodynamic characteristics are assumed to be
(A7) independent of Mach number and altitude
and to obey the relationship (drag polar)

n
(A8) CD = CDO+ kCL .

Assumption (A8) is a good representation for maximum range trajectories,
which are flown in the vicinity of (L/ D)max . The consequence of assump-

tion (A7) is to eliminate viscous interaction effects for high altitudes, which
may have an appreciable influence on maximum range trajectories as shown
in Reference 20, This can be accounted for partly by using a "medium"

drag polar. Mach number effects become dominant in the supersonic and
subsonic region which are not considered here, * The trajectories are ended

in 30 km altitude corresponding to about Ma = 3 . Although in the latter

part of the trajectory, the dependency on the Mach number shows up, assump-
tion (A7) is adopted throughout to reduce the number of parameters involved.

3.3 Assumptions for Analytical Solution
Further assumptions to obtain analytical approximate solutions are
(A9) small flight path angles: cosy = 1, siny = y
(A10) potential energy << kinetic energy: e = v/2

(A11) cylindrical planet: cos A = 1
horizontal centrifugal component << aerodynamic turn force

(A12) Quasisteady-glide: y = 0.
The flight path angle will be determined from a differentiation of
the QSG solution.

3.4 Radiative Heating Constraint

The heating constraint for a reentry vehicle is one of the driving
factors in trajectory shaping. Medium- (like the proposed Space Shuttle
orbiter) and high-L/D vehicles have a thermal protection system (TPS)
consisting of reradiative and ablative elements at different parts of the vehicle



[21]. The higher the L/D, the more reradiative the TPS is going to be. If
the time constants for the outer skin to heat up to the design limit is small
compared to the rate at which the vehicle state (especially altitude, angle of
attack, and velocity) changes, then a quasisteady approximation is valid, In
this case, the heating constraint can be formulated as an algebraic equation
¢(V,h,a) = 0, where V is the aerodynamic velocity, h is the altitude
(representing air density), and o is the angle of attack of the vehicle. It

is assumed that the sideslip angle B is kept small so that its influence can
be neglected.

The data underlying the present representation are taken from
Reference 22 for a limit temperature of 2000°F, Figure 2a shows a qualitative
picture of typical altitude constraints due to dynamic pressure and kinetic
heating. The effects of both velocity and lift coefficient are seen to be appre-
ciable for the heating constraint. The heating constraint is more severe than
the dynamic pressure boundary for hypersonic speeds (V > 2,5 to 4.5 km/s
depending on the angle of attack). In the trajectory optimization program, on

a boundary arc, the control CLH is required as a function of the state varia-

bles altitude and velocity, The data are given in the form [22]
o(h,V,a) = 0 . (3.1)

Since the use of the lift coefficient CL instead of angle of attack « reduces

the computational workload to represent the aerodynamic characteristics of
the vehicle, the relation CL(a ,h,V) is used to eliminate « . The trans-

formed equation (3.1) is, then, represented in the form

= i = 1.5 (3.2)
CLH Bi Hi + ACLH , 1 s
where
_ (j-1) . .
Bi - gl,:jﬁ ,» 1= 1,4 ’
Hy = bh?/V?

H2 = bh/V—H1
Hy = 1 -bh/V -H, ; (3.3)
Hy = V/(bh) - 2 + bh/V - H;

H; = VZ/(bh)? - 3V/(bh) + 3 - bh/V - Hy



and ACLH is an adjustment parameter; gi j

H

is a coefficient matrix

[ 0.110717 0. 834519 1.213679 ~1.060833 |
-0.672677  2.734170  -0.864369  -12.100000
0.812241  2.337815  10.316280 22. 974860 : (3.4)
-3.151267 -13.621310 ~40.485500  -57. 833330
2.368095 19.073400  69.869050  127.777778
A
h is a coordinate transformed altitude
A
h = h/s0[km] - 1 (3.5)

to keep the coefficients closer to 1, The constant b = 0,095 serves the
same purpose for the velocity. This form has been arrived at by intuition and
trial, It is a bivariate polynomial of third order in the altitude and fourth
order in velocity., With

4
N . A(j-2)
Ci = Z (j - 1) gi’j h , (3.6)
1
the partial derivatives may be written
9C, 4/8V = B, 8/8V(Hi) (3.7)
9C, ,/8h = C H + B, a/ah(Hi) . (3.8)
From the form (3,1) one obtains for constant C LE the partial
acLH
oh = - __8\_/'__’_ . (3.9)
oV oC
CLH LH
oH

The function generated in this way is shown in Figure 2b,
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Figure 2. Reradiative heating constraint for Space Shuttle

orbiter-type reentry vehicle.




The accuracy of the approximation is indicated in Figure 2b by dots
representing the original input data into the curve fit procedure. These
points had been obtained from Reference 22 through a crossplot. Except for
the 70-km curve, the approximation is good considering the uncertainty in
the original data. For maximum range and minimum energy loss trajectories
which result in lift coefficients in the vicinity of maximum L/D (around

C L= 0.2), the 70-km curve will not be needed. Aside from that, the

deviation is on the safe side.

4, EQUATIONS OF MOTION

Under the assumptions made, the equations of motion may be written:

. . D
V= - gsiny - — 4.1.1)
. A\ sin M
= - -— + n—
X — cos ycosy tan A + = o " (4.1.2)
. v g L
== - +
Y < " V) cosy + <~ cos K (4.1.3)
s« _ V cosvy
6= — cos X (4.1.4)
r cos A
3 _ V .
A =  cosysiny (4.1.5)
r = Ly = Vsiny (4.1.6)
where
I L CL , lift
= s \'& , (4,1.7)
D CD drag



exponential atmosphere
p = Py exp (—ﬁdhd) , (4.1.8)
gravity acceleration

g = g Rz/(R + hd)2 . (4.1.9)

The lift coefficient C L and the bank angle # are controls. For analytical

solutions, a nondimensionalized form of these equations is advantageous.
With the nondimensional time,

T = tNg/r (4.1.10)
and
v = V/(rg) , h = hd/r (4.1.11)

these equations (4.1.1) to (4.1,7) become the following, where

() =2 () , a=BSr (4.1.12)
dr 2m
v = -Av 2 |:a exp (-Bh) CDV + sin 'y:] (4.1.13)
X = NV I:a exp (-Bh) C. sin#/cosy - cos vy cos X tan A] (4,1.14)
y = W[a exp (-Bh) CL cos i - (1 -v)/vcos 'y] (4.1.15)
6 = NV cos vy cos X/cos A (4.1.16)
A = NV cos vy sin x (4.1.17)
h = v siny ) (4.1.18)

The reciprocal atmospheric scale height now has approximately the value
(for earth)

B =~ 930 . (4.1.19)



The solution to these equations for maximum range trajectories will
now be approximated by superposition of two motion components:

1, A QSG motion with equation (4.1, 15) satisfied by 'y =0

2, A small perturbation around the QSG trajectory.

4.1 Quasisteady-glide Maximum Range

4.1.1 VARIATIONAL QSG-EQUATIONS

By infroducing the specific energy
e = v/2+h (4.1.20)

and adding equations (4,1,13) and (4,1,18), the nondimensional altitude h
becomes control-like, and, with v = 2(e - h) from equation (4.1, 20) and
applying assumption (A2), the following set of equations are obtained for
the analytical QSG solution:

& = -~N2(e - h) aexp (-Bh) CD2(e—h) (4.1.21)
X = J2(e - h) [a exp (-Bh) CL sin #/cosy - cosy cos X tan A]
(4.1.22)
® = N2(e - h) cos v cos X/cos A (4.1.23)
A = ~N2(e-h) cos y sin X (4,1, 24)

N2(e - h) (a exp (-Bh) C cosk - {1/[2(e—h)] - 1} cos y) =0 .
(4.1.25)

These are four differential equations and one algebraic one, equation (4. 1.25),
which, however, has to be satisfied all along the trajectory.

All initial conditions of the differential equations are considered to be
given, while the initial altitude has to be found such that the payoff quantity
obtains its extremum, This is an optimization problem with mixed side
constraints [23]. The variational Hamiltonian is

10



R ]

A

H = ~f2(e - h) {a exp (-Bh) [— )‘e CD 2(e - h) + CL( X_ sinp + VCOSM)]

cos vy

. 1
+ [(— AxtanA + he/cosA> cos X + }\A smx—v<——2(e_h) —1)] cos vy

(4.1.26)

and, since final time is open, the bracket {} is zero. v is a time-varying
multiplier associated with the equality constraint (4,1.25) and will be
determined as a linear combination of the multipliers A [23].

For a moment, eliminate equation (4. 1.25) by introducing it into
equations (4,1.21) and (4.1.22) in order to obtain a convenient expression
for the optimal lift coefficient. Later on, however, one continues with the
mixed side constraint formulation, One obfains

o 1-v
= - - 4,1,27
e VVECOS# cos y , (4.1.27)
where
E = CL/CD
o tan 4
X = NV < - COS 7y cOS xta.nA> , (4.1.28)
cosy

and the control-dependent part of the Hamiltonian in this formulation is with
cosy = 1:

e E cos i

o w{-x A= anp } (4.1.29)

BH /6C = 0 yields OE/6C_ = 0 , i.e., the lift-to-drag ratio

(4.1,30)

E has to be a maximum for a maximum range QSG trajectory., Since the
aerodynamic drag polar is considered to be constant in the hypersonic range

considered, E is a constant as well as C LE the corresponding lift

coefficient, This information will be used when one returns, now, to the
mixed formulation (4,1, 26).

i1



Looking for the extremum of the Hamiltonian with respect to the
min

controls CL , M and altitude h yields for maximura range N H
Bank angle:
)\X
tanp | = (4.1.31)
opt vV CcOS 7y
or
sin p = Ax/(—wcos'y) , cos i = p/(-w) ,
2 2 2 \ Y2
W = <v + AX /cosy) . (4,1,32)
Optimal lift coefficient:
oC
D -W 1
S - = = . 4.1.33
8C AV E (4.1.33)
L C e
LE

From equation (4, 1,30) one concludes that w/ (v)xe) is a constant, Iis

value is the inverse of the lift-to-drag ratio, 0H/0h = 0 furnishes the
relationship '

2y
a exp(-£h) [AeC E Bv+2) + B WCLE] - gecosy=0

D
(4.1,34)
or
—— 2V -
[a exp(-Ah) CD:] - vz[?\ (Bv+2) + BEWJ ’
opt e
which with equation (4, 1,33) reduces to
[a exp(-Bh) C ] S (4.1.35)
D AV
opt e

12



Combining this with the QSG equation (4, 1, 25) yields

A

y = —
E

v (1 - v) . (4,1, 36)

From equation (4.1,26), the differential equations for the Lagrangian
multipliers become (final time open, H=10)

o - 1
Ay = -N2(e - h) [aexp(—ﬁh) CD2<—Ae> + Vz(e_h)z]
and with equation (4. 1.35)
A =0 or A = const (4.1.37)
e e

AX = —’\/2(6—11) [(7\9 - Ax sin A) (-sin x) + 7\A cos x]
(4.1.38)

3 = = . . 1.

}\e 0 or 7\6 const (4 39)

A= «/z(e-h) Co8 X (AX - Ae sin A) . (4.1,40)

A cosZA

There are only two differential equations for the adjoints, and because of
Ae = const, the multiplier p is a function of v alone,

The boundary conditions for maximum-range-QSG with a given kinetic

1
energy decrease — (v 0o~ vf> and open final heading angle are

2
at t 0 at 1:f multiplier at tf

vy = given Ve = glven }‘ef ~ unknown = }\e

Xo = 0 xf = open }\Xf = 0

O, =0 ¢ = A + pO = max 7\e=—p

Ap = O H(t) = 0 (see section 4,3, 3)
A, = -1
A

hg , Ky, Yo have to be found such as to maximize the payoff quantity ¢ .

13



From AX = 0 and equation (4.1,31) the equation for the final bank angle
f
follows:

H.o= 0 . (4.1.41)
Differentiating the QSG equation (4, 1,25) with respect to time and inserting

equations (4,1.13) and (4.1,18), an expression for the flight path angle is
obtained:

1-v 2/E+~v Ksinp
cos b 2+ (1 -v)Bv

siny = - . (4.1,42)

With equation (4,1,41) for the final time, this reduces to

. =21 -v)
Esm»yf = 3 (- vIEY . (4,1,42a)

Compared with results from numerical optimizations, this equation predicts
the final flight path angle with good accuracy. It is the same as for planar
entry, Except for the final time, the flight path angle is a function of the
bank angle and its rate of change, however,

4,1,2 SOME ANALYTICAL APPROXIMATE RESULTS FOR MAXIMUM
CROSS-RANGE

With 7\9 = 0, which characterizes this case, and assumptions (A9)

to (A11), the variational QSG equations reduce to

v = —2'\/_\7[& exp(-fh) C V:l A =0
I D e
Q
X = Nv a exp(-8h) CLsinM AX = -Nv A, ©OS X
o o (4.1.43)
6 = NV cos X Ao = O
A = NV sin x OAA=\/_V-7\Xcosx

14



a exp(-gh) CLE cosp = (1-v)/v (QSG)

tan p = A [y with v = A vN1 -v /E
opt X e
2 A
= = = }\' +

CL opt CLE where E (L/D)max v e/(?\x V)
Combining the last two lines with three equations for the four quantities pu,
Ax , vV, and the product (}\eV) yields the surprising result

tan p = Nv/(1 -v) or sinp = Nv . (4.1.44)
Note that this simple relationship for the bank angle as a function of the
velocity (¢ = arc sin of the ratio velocity to local satellite velocity) has
been obtained from the three relations 9H/0u = 0, uT = (CL , b, h),

together with the QSG condition without taking into account any boundary
conditions. Therefore, this solution will be called ""basic' and will be regarded
with due suspicion, It may further be noted that this bank angle program has a
square root relationship to the minor circle turn bank angle program [ 11, 13
through 16 ]. This solution is discussed below.

4,1,2,1 "Basic" Solution, Differentiation of equation (4, 1,44) with
respect to time yields, with equations (4,1,13) and (4.1,25),

) - i \
. %<1+ E siny . (4.1.45)
1-v

Combining these results wilh equation (4, 1.42), obtained by differentiating
the QSG condition, leads to

. _ -1 (2 -v) N1 -v
sin = E 2 + vIB(L -v) = 1] (4.1.46)

and

o_:l _ 2 -v
K= 3 {1 2+ vig(-v) _1]} . (4.1.45a)

These results are plotted in Figure 3. It is seen that the flight path angle is

small except for very small velocities. The bank angle rate is close to
- 1/E except for v closeto 0 and 1.
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Figure 3. Characteristics of basic @SG maximum range analytical solution,
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From the QSG condition, altitude as a function of velocity and lifting
factor is

h = -éln ————“jl'c" ) (4.1.47)
va e

Inserting equations (4.1.25), (4.1.44), and (4.1.46) into equation (4.1.13)
yields

o _ =2 = _ 2 -v
v = B Nv(i -v) {1 5 +vIB(1-v) _1]} . (4.1.48)

Neglecting the second term inside the brace [assumption (A11), compare
equation (4.1.45a) and Figure 3], this equation may be integrated to yield
the final time:

A\
—1 —
t, = E (tan Yo _ pan / £ ) (4.1.49)
1 —Vo 1 _Vf

Combining the first two differential equations of equation (4.1.43) yields,
with equation (4.1.44),

X - X = E(\/VE - W) . (4.1.50)

This equation neglects the centrifugal term in the heading differential equation
so that for larger cross-ranges the actual heading angle will be smaller.
Figure 4 shows how the inertial term grows with increasing lift-to-drag ratio.
For L/D =3, the inertial summand averages about 15 percent of the aero-
dynamic one.

For orbital reentry with vp=1 and v_=0.01, equation (4.1.50)

f
predicts a final heading of xf > n/2 for vehicles with E> 7/1.8= 1,75,

Some results for other initial and final conditions and the vehicles parameters
given in Table 1 are shown in column 8 of Table 2.
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Figure 4. Numerical check on assumption (Afia) for

TABLE 1:

E=L/D CDO k ”_n
1.4 0.109 1.45 2.18
2.22 0.04 1. 1.86
2.38 0.04 0.95 1.91
3. 0.028 1.46 2.21
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TABLE 2. MANEUVER TIME AND FINAL HEADING
FROM ANALYTICAL SOLUTIONS

1 2 3 4 5 6 7 8
T Maneuver times (t/sec)
Cross-range
vf for p=0 Downrange Numerical xf
/D Vg at hf=30km eq. (4.1.54) eq. (4.1.53) eq. (4.1.49) QSG eq. (4.1.50)
1.40 0.90850 0.00822 2024. 1371. 1338. 1340. 69.
1.40 | 0.95000 0.00822 2382, 1471. 1431. 1458. 71.
1.40 | 0.98180 0.00822 2968. 1583. 1534. 72.
2.22 0.90850 0.01990 3118, 2112, 2030. 103.
2.22 | 0.95000 0.01990 3684. 2275, 2178. 2193, 106.
2.22 | 0.98180 0.01990 4613. 2460. 2341. 2382. 108.
3.00 0.90850 V 0.02490 4171, 2826. 2702. 2747. 137.
3.00 0.95000 0.02490 4937. 3049. 2902. 2880. 140.
3.00 | 0.98180 0.02490 6192 3302. 3122, 143,

By assuming a linear bank angle program with time as suggested by
equation (4.1.45a) and Figure 3, the QSG differential equation for the velocity
may be written as

[ - _ % ’\/;;!1 "VZ
M E cos (yy - at)
or
> - Zﬁcbs cos or’rid-: sin p, sin at ’ (4.1.51)
NV (1 -v) Ho Ho
which integrates to
f f
g PN R 1n tan[0.5(a7 + L. uo)] . (4.1.52)
E«o 2
1 -~Nv o 0
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Requiring e = 0 at the final point Ve leads to

- . T _ bk
Tf,L = Tf,S uo/ln [ctn <4 9 >} ) (4.1.53)

where Te s is Sanger's downrange maneuver time [1]:
Te g = 0.5EIn vy (1 =Nv) . (4.1.54)
’ (1 -~Nvy) (1 +~Wv)

Columns 4 through 8 of Table 2 show maneuver times for maximum range

trajectories ending at hf = 30 km altitude. For conversion to dimensional

time, an average value of \fr_/g = 815. sec has been used. Sanger's down-
range result [1] is given in column 4. The next column contains the linear
bank-angle-law cross-range maneuver time with p, taken from equation
(4.1.44) using equation (4.1.53). The basic solution (4,1.49) yields column
6, which is in surprising agreement with maneuver times obtained from opti-
mizing numerically with the full set of nonlinear differential equations [equa-
tions (4.1.1) to (4.1.9) and (4. 3.1) through (4.3.9)] and QSG initial condi-
tion hy and vy, determined from equations (4.1.47) and (4,1.46), column 7,
Except for the last case shown, the numerical results lie between those of
columns 5 and 6, Maximum lateral range trajectories do have a final heading

angle in the vicinity of g relative to the entry direction, From this observa-

tion and the numbers shown in column 8 for the final heading angle of the basic
solution, the deviation of actual bank angle programs from the basic ones can
be guessed, As will be discussed later in connection with the numerical
results, optimal QSG maximum lateral range trajectories follow the basic
bank angle program initially very closely and deviate from it toward the end,
depending on L/D and the velocity range covered.

A full analytical solution to the boundary value problem, equation
(4,1.43), has not been found, Two integrals which check favorably with
numerical results are the following:

Combining the XX and A A differential equations in equation (4,1.43)

yields
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with the integral

2 £ A 2 _ 1 4.1.55
Ay A , ( )
‘here the integration constant has been determined from AA = -1 and
f
}\X = 0, Despite the approximation made, this result agrees very well with
¢ A

~+.1erical solutions to the complete equations (4.1.1) to (4.1.6) as may be
seen from Figure 5.

2500(E = 3) 2000 E = 2.22
\ /1ooos=1.4
T L

-1 v ‘f- + A
2000‘
1500
-0.8 -
-0.6-
_OFORE=1.4
* E=1.4QSG,v,=095
A\ + 2.22QSG, vy = 0.95
04l ® 2.220SCILL. (7, = -1.25°
4 30SG,v,=095 /
t/sec = 500
—0.2}-
0 FOR E = 2.22
1 | 1 1
o -0.2 Y -0.6 -0.8
5%
+0.2% -0FORE=3

Figure 5. Comparison of analytical approximate result

}\xz + AAz = 1 with numerical solutions,
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Combining the é and 3\)( equation using equation (4.1.53) yields

da
X

N1 -AX?‘

do = -

with the solution

© = 6y + arcsinA_ - arcsina . (4.1,56)
Xo X
For ©, = 0, the downrange at t_, then, is
O, = arc sin A . (4.1.56a)
f Xo

4.1.3 NUMERICAL QSG SOLUTIONS

Even though oscillatory trajectories yield maximum range for non-
equilibrium initial conditions, QSG trajectories are of special interest since
they yield more uniform load distributions and passenger comfort without
sacrificing much range. They need not, of course, be flown at maximum
L/D if the mission does not require it. In this section, some numerically
obtained QSG-footprint trajectories are described.

To get an optimal three-dimensional QSG trajectory, initial conditions
have to be matched with the unknown optimal control. This was done in an
iteration loop on the initial conditions altitude and flight path angle around the
optimization loop to determine the control. The optimization scheme used,

a hybrid between the gradient and indirect methods, is especially suited for
maximum range footprint computations [24]. The equations of motion
underlying these computations are (4,1,.1) to (4.1.9) with a drag polar of
the form (A8)., The adjoint equations are given in section 4. 3.

Because of the computational workload involved, trajectories were
considered to be reasonably converged QSG when, in the altitude plots,
oscillations were hardly recognizable. Some of the trajectories could still
be improved with more iterations. A good indication of optimal QSG is that

the lift coefficient stays at CLE all the time, It is especially sensitive

to non-QSG initial conditions.
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range
initial

Figure 6 shows cross-range versus downrange for maximum cross-
trajectories and three different vehicles (Table 1) from different
conditions (Table 3).

70. L E=3
v 0.95
v, = 0.9085 '
1]
60.- |
CROSS-RANGE ' I

40.
N/deg
20.—
— , L DOWNRANGE |
0 20. 40. 60. 80. 100.
0/deq
Figure 6, Maximum lateral range QSG trajectories.
TABLE 3. BOUNDARY CONDITIONS FOR MAXIMUM
CROSS-RANGE QSG TRAJECTORIES
L/D Vo Yo/ 0 hy/km Mo 0 Remarks
QSG,
-1
1.4 0.9085 -0.1729 70,74 72.4 hf = 30 km
0. 95 -0, 2125 73.04 77.1 QSG final conditions
2,22 0.95 -0.134 66, 85 see section 4,3.3
0.9818 -0,182 70,37 82,4
3. 0.9085 -0,0804 63.59
|1 0,95 | -0.0994 ]| 65.28




A comparison of the (L/D = 2,22, v, = 0.9818) - QSG trajectory
with an oscillatory maximum cross-range trajectory with a flight path angle
of yo = -1degin hy; = 64 km altitude is given in Figure 7a. It is seen that
the downrange is decreased by about 20 percent and that the cross-range
remains the same, The corresponding controls are shown in Figures 7b and
c. From Figure 7d, it may be seen that the oscillatory trajectory in an
altitude-velocity plot centers around the QSG solution (see also section 4., 2 on
perturbations). Below V = 2 km/s , both trajectories are very similar,

44.29 24.29
a0l
NO HEATING
Aldeg CONSTRAINT
20
10
)|
0 20 40 80 100

©/deg
a. Range angles.

80 ——0sG V, =7.85 km/s
7, = -1.25°
h_ = 80km
e
60
wTHOUT HEATING
uldeg CONSTRAINT
40 WITH HEATING
CONSTRAINT
20
0 L f l L— Il L ] I L
) 400 1000 .~ 1500 2000

b, Bank angle time histories,

Figure 7., Maximum lateral range orbiter reentry
L/D = 2,22, m/F = 250 [kg/m?].
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11}
1 L. 1 y [ /] it ] 1 1
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o8
c. Lift coefficient.
80
70 |-
WITH HEATING CONSTRAINT
60 |
h/km
50 N NO HEATING CONSTRAINT
QUASISTEADY GLIDE
a0
1 1 1 ] 1

30—

2. 3. 4. 5. 6.
V/{km/s)

d. Altitude versus velocity.

Figure 7. (Concluded).
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The bank angle time histories in Figure 8 for v, = 0.95 indicate the
validity of the basic solution bank angle rate, Initially, it is very closely
1/E , and it increases or decreases toward the end, depending on the lift-to-

drag ratio E, For maximum cross-range, the final heading angle xf is in

the vicinity of 90 deg relative to entry. The analytical basic solution yields
smaller values of Xs » equation (4.1,50), for E = 1.4 and larger ones for

E = 2.22 or 3. Figure 9 shows how the adjustment in the bank angle
*program is made by increasing the bank angle K at lower velocities for

E = 1,4 and decreasing it for the higher values. If the initial velocity for
E = 1.4 is lowered to 0.9085 (dashed curve), the bank angle is increased
over the entire trajectory.

80

=== BASIC ANALYTICAL APPROX. SOLUTION
------ NUMERICAL RESULTS 1.4

60 [ +++ NUMERICAL RESULTS 2.22

AAA NUMERICAL RESULTS 3.

A
pideg o1
T a
222 A
E=14 + A
20 + A
+ A
A
+
1 1 L ) AL
0 1000 2000 3000
— t/sec

Figure 8. Bank angle time histories for maximum lateral range QSG.-
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[ | 1
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Figure 9. Comparison of bank angle programs between
basic analytical approximate QSG solution and
numerical solutions for maximum lateral
range from same initial conditions.

In Figure 10, QSG trajectories for different points on a footprint are
given, It is seen that the bank angle program in the general case is not
nearly linear with time, For maximum downrange, M is of course identically
zZero.
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Figure 10. Maximum range QSG-footprint

for E = 1.4, h, = 30km, V_ = 7.5 km/sec ,
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4.2 Perturbation Equations Around Quasisteady Glide

For slightly perturbed initial conditions away from the QSG combina-
tion, a good approximation to the actual trajectory may be obtained from
ieries-developing the equations of motion around the QSG state as has been
shown for the two-dimensional case in References 4 and 5, In this section,

a similar approach is taken for the three-dimensional case based on the basic
solution developed in section 4.1, 2,

With the state and control variable approximation

X = x. + 0x , u=u_ + 6u (4.2,1)

where the index Q indicates the QSG solution, a Taylor series expansion of
the differential equations (4.1.13) to (4.1.18) yields, with a truncation after
the linear term in the perturbation,

.3 ). of of
(XQ + 6X>_ f(xQ, u.Q> +8le ox + 5u

éu +

Q
(4.2.2)

Removing the quasisteady glide component leads to the linear set of differen-
tial equations with time-varying coefficients

Q
Xx = Ax + Bu s (4,2,3)

where the 0-sign has been dropped for convenience and the coefficient

matrices A and B are defined below I:for xT = (v , 6y, 6x, 60 , 6A)
ut = (cscL, 6#)] , with

b = v a exp(-Bh) (4.2.4)

and the QSG condition (4.1, 25) introduced into the matrix A ,
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I
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V 500 V soo V S09 A -
Veaxsesap 0 W ANS 0 X565 AN Y soo
V ,S00 0 vVuEXws AN AN/ URI(A - T)g- (Vlm;Xsoa + ¥ uey %)AM (4z2)/%
X 500 AN-—
= Vv
0 0 0 0 Ap Ap/Ag©0 (4.2.6)
0 0 0 AN(A - D AM(A- DA Yy A
AN
71 SO0 | - 900 g i
0 0 0 NG - NoE 2pe (L * W—r)s) 7

4,2.,1 FROZEN STATE APPROXIMATION

Under the assumption that the variables on the reference trajectory
are constant, momentary natural frequencies and damping of the perturbation
motion can be computed, From the matrix A , equation (4.2,5), it is seen
that the vertical motion is uncoupled from the rest (upper left quadrant). It
has the characteristic equation (Laplace transform):

_s 3 v 3 2
1-w (Ecos,u - 7>+ S[Bv<EcosM - 1) " Ecosk (1—V)]

+ Bv{y + [(L-v)y? = (1 -3W1/(Ecosp} = 0 ,

which over a wide region of v with v << 1 and 1 << v can be approximated
by

g3 3

—_— S —
(1 -v) S E cos U

- sfv + Bv <y - Eic_T?ﬂ;’L>: 0 . (4.2,7a)

In Figure 11 the eigenvalues (period, damping) for the basic solution with

cos b = N1 -v are plotted against the velocity parameter v using equation
(4.2.7).
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Figure 11, Frozen state perturbation around basic QSG solution,
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From Figure ila, it may be seen that the oscillation period, given in
nondimensional time, is almost independent of the lift-to-drag ratio and
decreases monotonically with deceleration, The damping ratio decreases
with E = L/D increasing; as function of the velocity parameter v , it has
a minimum around v= 0,6 and assumes values around ¢ = 0.4 for small v,
Figure 11b shows the unstable real root A; and the damping term of the
oscillatory component. Though opposite in sign, they follow the same trend
characterized by a sharp increase in absolute value for v = 1/3, For
vehicles with higher L/D the subsidence mode is less unstable,

4.2,2 NUMERICAL INTEGRATION OF PERTURBATION EQUATION

For a linear bank angle law and an initial velocity corresponding to
vo = 0,95, three sets of equations have been integrated to check the approxi-
mation of nonlinear oscillatory trajectories by a superposition of a QSG
trajectory and linearized perturbation trajectories. The QSG trajectory was
computed numerically using the same equations (4.1.13) to (4,1.18), as for
the non-QSG trajectory but initial conditions determined from the basic solu-
tion, The full set of perturbation equations including the lateral motion but
no control perturbation have been used.

Figure 12 shows the altitude perturbation for a vehicle with E = 1.4
and 6hy = + 1,46 km and 0y, = “YgsG = 0.2125 deg . The oscillations

for unchanged control do not center around 6h = 0 but around a displaced
divergent curve when plotted over time (Fig. 12a). The period oscillation is
well approximated by a medium value of the frozen state results from the
previous section, Toward the end, the strong divergence predicted by the
frozen state approximation becomes obvious. When the altitude is plotted
over the velocity parameter v , however, all perturbed trajectories converge
in the final part toward the QSG trajectory (Fig. 12b). As seen from Figure
b, the optimized oscillatory lateral range trajectory oscillates around the
basic solution, This shows that the control change due to non-QSG initial
conditions is determined such that (see Figures 7b and c) the altitude oscil-
lation takes place around the optimal QSG values, The lower curve in Figure
12a (dashed) shows the difference between nonlinear non-QSG and QSG trajec-
tory, and it demonstrates the good degree of approximation of the nonlinear
solution achieved by the perturbation equations superimposed on a QSG trajec-
tory. For larger initial perturbations and longer maneuver times, the quality
of the approximation deteriorates. Figure 13 shows for 6&y,= -0.2875 deg and
E = 2,22 the discrepancy between linearized perturbation and nonlinear
solution, which to a large extent stems from the first dip, In the nonlinear
model, the first maximum in Ah is 20 percent lower than for the linearized
equations, resulting in a time shift, The period of oscillation is slightly
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Figure 12, Altitude perturbations for a vehicle with E= 1.4, vj=0,95.



Figure 13, Comparison of perturbation solution to nonlinear
results, E=2.22, vo= 0.95, Oyy= -0.2875 deg, 0hy=0,

smaller in the nonlinear case. The general tendency of the nonlinear solution
is reflected correctly., The maximum deviation of 6v occurs in the vicinity

of v=1/3.

The simple linear approximation used here seems to I.e valid for
perturbations of a few tenths of a degree in flight path angle and a few kilo-

meters in altitude only.
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4.3 Set of Variational Equations for Numerical
I nvestigations

4.3.1 UNCONSTRAINED ARCS

From equations (4,1) to (4.9) follows, with the Hamiltonian function
H= -2 gsiny+lcosy A (1-gr) - A_cosxtanA
A r Y X

cos X
A cos A

+ Ve C! (7\ + A cos N) A CW N (4. 3.1)

+ AA sin x]+ AhA sin vy

2m X cos vy

a set of differential equations for the Lagrangian multipliers according to

A= -H :
X
A =0 , (4.3.2)

2

. cos COS X 3 _ _ < goR )
o8y [— (xxsmA 7\9) A, AL S

>
1l

v r cos A

S -
—AAsinx] - Ahsiny+ —pﬂ-eﬁh

2m
A
Xx |2VA ¢ - ¢ X_ sinp + A cosH , (4,3.3)
v D L\cosvy Y
. =Vcosl/ _ . sin _ 4.3.4
AX " [(7\6 }\X smA) “os A }\A cos xil , (4.3,4)
= - +

7\7 cos vy 2z AhV -

2
cos X . goR .
_— - 4+ 1 - +

wos r (e )\X sin A) 7\y < —Qz—v r) }\A sin ¥

A sinvy
- X 5Py Ph L vsinp , (4.3.5)
cosz; 2m L
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. V cos vy cos X .
= A, - - L]
N r cos® A ( X 7\6 smA) ’ (¢.3.6)

>).
1l

2 g,R? A V cos
h _%,0__ }\Vsiny+-%cos'y +—2—7

r r

[
€os X _ . . _ Spy -ph
X 005 A <7\e AxsmA>+ Ay+ AAsmx ﬁ2me v

A
X

x |VA e. - ¢ sin it + A cos M . (4.3.7)
i v D L\ cosy Y

This set is valid for unconstrained arcs with the controls given by

-1
“opt = tan [Ax/(}\y cos y)] (4.3.8)

c B | Y-t (4.3.9)
Lopt va kn

where

v (o) S

4.3.2 CONSTRAINED ARCS

and

On a constrained arc of the form

C=h-nhnh <C,V>=O , (4.3.10)
e L

Reference 25, the control is chosen by satisfying the constraint

Ciy = fe(h,V) , (4.3.11)

and there appear additive terms in the adjoint differential equations (second
summand)
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-1 T
. of of [ oC aC
A= ‘axAJ’[au(au) ax] A . (4.3.12)

Since the only control involved in C is the lift coefficient C_ and the

L
sates involved are h and V , one obtains
oC
. . LH
Ay S Ay T Ky (4.3.13)
c uc &
oC _ .
. LH
xhc = xh’uc K—3 (4.3.14)
with
A
SpV X (n-1)
om cos 7 sin K + xy cos K - V)\anCLH
C LH and its partials are determined according to the model described in

section 3. 4.

4.3.3 BOUNDARY CONDITIONS

The boundary conditions to these and the state differential equations,
equations (4.1.1) to (4.1.9), are as follows: The initial state variables

are considered to be given. At the final time the altitude is fixed. hfz 30 km

was taken as stopping condition for the integration, With all other state
variables open to assume the most favorable values for maximum range, the
trajectories end with a flare, trading kinetic energy for range in the final
part and the lift coefficient goes to its maximum value [24]. This undesirable
boundary layer type of behavior was suppressed by prescribing vertical
equilibrium at the final time with a lift coefficient corresponding fo maximum
L/D. For open final heading )\X = 0) it is seen from equation (4, 3, 8)

f

that the bank angle is “f = 0. With altitude, lift coefficient, and bank angle
given, equation (4.1.3) can be solved for the QSG velocity Vf (&f = O)

using equation (4, 1,42a) to eliminate the flight path angle vy ‘e

37



However, to reduce the number of adjoint sets to be integrated back-

ward in the min-H-gradient procedure [24], Vf and vy f were not prescribed

directly. In a quasisteady glide state, which is desirable for continuation of
the trajectory to landing approach, the Lagrangian multiplier to the velocity
is eagily determinable from the velocity by a physical consideration, The
aerodynamic properties of the vehicle translate the kinetic energy altitude

V2
hek T 2g (4.3.15)
into range via the factor E = L/D, Therefore, for range R measured in
a geocentric angle, there follows for the conditions given at final time
A% \'2
oR -0 f f
= - T~y = g E D = - - . L] L]
}\Vf BVf oV ( 2gr> E gr (4.3.16)
With Vf and AV given, the multiplier Ky can now be determined from
f f
equation (4, 3,9) for the desired final lift coefficient CLE :
(n-1)
A, = VA, k€ . (4.3,17)
f f
For general range maximization, the payoff quantity is
¢ = A + po . (4,3.18)

P = 0 leads to maximum lateral range Amax and p>> 1 leads to maximum
downrange emax . Therefore, one can expect differences between optimal

trajectories only for values of p in orders of magnitude around 1(p= 10S
with !s| < say 3)[24]. This payoff quantity leads to final values for the
Lagrangian multipliers.

A =A_ = -p . (4,3.19)
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For footprint evaluations with QSG final conditions, the boundary value prob-
lem has, thus, been reduced to requiring only the backward integration of
one set of adjoint equations without resorting to penalty functions,

5. HEATING CONSTRAINED MAXIMUM LATERAL
RANGE NON-QSG ENTRY TRAJECTORY

For the heating constraint modeled in section 3.4 with ACLH = 0,03,

a maximum lateral range trajectory for a Space Shuttle orbiter-type vehicle
has been determined (Fig. 7).

The numerical iteration with a refined gradient program was stopped
when the increase in lateral range had become very slow. Of the control
update computed from the min-H-feature, only about 1 percent could be used
without having the iteration diverge. Figure 7d shows altitude versus velocity
for three cases: The dash-dotted smooth curve is a QSG trajectory for
comparison, around which the (solid) unconstrained trajectory with Ve = 7,850

km/s at 80 km altitude and Vo= -1, 25 deg is seen to oscillate. There are

five peaks in the velocity range down to 4 km/s. The heating constrained
trajectory has only three peaks in this region and is shifted upward. This is
achieved by a higher lift coefficient (Fig., 7c) and a smaller bank angle (Fig,
7b), initially, When the heating constraint is first encountered, the lift
coefficient yields in order not to violate the constraint, The iteration process
positioned this dip around the lift coefficient for best L/D ., During the
first dip , the bank angle is slightly increased to use the lift for a heading
change and decrease the upward velocity which would lead to too large a flight
path angle at the beginning of the second constrained arc where the heating
limit is most severe due to the combined effect of high velocity and beginning
gravity pull, no more balanced by the centrifugal force. In this region, the
bank angle decreases below the value for the unconstrained trajectory and
stays there for a while., After the heating region is passed, the bank angle

is increased above that for the unconstrained trajectory to make up for the
heading change loss in the earlier parts. As Figure 7a shows, this results

in a downrange increase of approximately 4 deg, but the lateral range loss is
only about 2 percent., The arcs on the heating boundary are approximately
4%, 7, and 2} minutes long.
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6. CONCLUSIONS

Maximum range, three-dimensional atmospheric entry trajectories
for lifting vehicles have been approximated by a superposition of a non-
oscillatory quasisteady glide component and solutions to linearized perturba-
tion equations, For the QSG motion, variational equations have been derived.
They show that the multiplier to the flight path angle is a linear combination
of the other multipliers, which may be the cause of numerical difficulties
encountered when applying indirect methods to range maximization,

By applying the maximum principle to the QSG problem, a simple
bank angle control law has been obtained without taking the boundary conditions
into account., This "basic" control, in comparing it to numerical solutions
of the full equations, turns out to be closely followed for maximum lateral
range trajectories. Adaptation to the special case is achieved by modifications
propagating from the final time backward. Because of the simplicity of this
basic control, bank angle equal to arc sin of ratio velocity to local satellite
velocity and nondimensional bank angle rate approximately equal to inverse of
lift-to-drag ratio, some analytical approximate solutions have been obtained.
The maximum cross-range maneuver time can be determined fairly accurately.
A full analytical solution, however was not achieved., Numerical QSG solu-
tions are given for Space Shuttle orbiter class vehicles with L/D from 1.4
to 3. For general footprint trajectories, the optimal bank angle program is
not linear with time, The perturbation equations around QSG show that the
frozen state oscillation period is almost independent of vehicle parameters
and depends only on velocity while the damping decreases with increasing
L/D . There is an unstable motion component over the entire velocity range,
increasing rapidly as v becomes less than 1/3, In this region the damping
and the frequency of the oscillatory mode also increase strongly, leading to the
almost smooth altitude~velocity curves for all perturbed trajectories at these
low velocities, The range of validity of the simple linear perturbation equa-
tions is limited to a few tenths of a degree in flight path angle and a few
kilometers in altitude.

The influence of an angle of attack (lift coefficient), altitude- and
velocity-dependent heating constraint on a maximum lateral range earth-
orbit entry trajectory for a Space Shuttle orbiter-type vehicle has been inves-
tigated numerically. Although the shape of the control time histories and the
trajectory have been changed considerably, the loss in lateral range was
only about 2 percent compared to the unconstrained one,

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Marshall Space Flight Cenfer, Alabama 35812, May 1972
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